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Exercise 12.1 (4 points)
Let A be an arbitrary non-empty set and let R C A x A be a relation on A.
(a) Let R be an equivalence relation. For any © € A we call the set [z]gr := {y € A: xRy} the
equivalence class of z with respect to R. Show that for all z,y € A either [z]g = [y]g or
[z]r N [y|r = 0. Moreover, show that A = Ugcalz]r.
(b) Conversely, prove the following statement: Let I be a set and let {A; : i € I} be a family of
non-empty subsets of A such that
(i) AinAj =0for all ¢,j € I such that ¢ # j and
(11) A= U A;.
Then the following defines an equivalence relation on A:
2Ry & Jie I({z,y} C A)

Exercise 12.2 (4 points)

Let K be an arbitrary field, n > 2 arbitrary and M = Mat,,«, (K ). Decide in (a) and (b) whether the
given relation R on M is reflexive, symmetric and transitive, and whether it is an equivalence relation.

(a) (A,B) € Rif and only if A and B are row equivalent.

(b) (A, B) € R if and only if there is some matrix C € M such that A = BC.

(x) Describe the relation R from part (a) in the form A = BC for some appropriate matrix C.

(c) Check the following argument:
Let M be a set and R a symmetric and transitive relation on M. We claim that then R is also
reflexive. So let x € M. Choose some y € M such that xRy. By symmetry we get yRx. From
xRy and yRx follows via transitivity that x Rx. Hence, R is reflexive.

Where is the mistake? Find a concrete counterexample.

Exercise 12.3 (4 points)
Consider the following linearly independent vectors in R3*! :
0 0 2
Uy = 1 s Ug = 1 y Us = 0
0 3 1

Determine the dual basis of {u1,us,us}, i.e. the linear mappings f; € (R®)* such that fi(u;) = d;;
(i=1,2,3).

Exercise 12.4 (4 points)
Let K be a field and n € N. For any A = (a;;)1<i,j<n € Mat,x,(K), the sum tr(A) := Y | aj; is called
the trace of A. Show:
(a) tr: Mat,«,(K) — K is a K-linear map.
(b) tr(AB) = tr(BA) for all A, B € Mat,xn(K).
(¢) The following are equivalent:

(i) For any A € Mat,«,(K) there is some a € K such that tr(A — al,,) = 0.

(ii) char(K) does not divide n.
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